Probing near Dirac point electron-phonon interaction in graphene

نویسندگان

  • Jingzhi Shang
  • Suxia Yan
  • Chunxiao Cong
  • Howe-Siang Tan
  • Ting Yu
  • Gagik G. Gurzadyan
چکیده

Carrier dynamics in graphene films on CaF2 have been measured in the mid infrared region by femtosecond pump-probe spectroscopy. The relaxation kinetics shows two decay times. The fast time component is ~0.2 ps, which is attributed to the mixture of initial few ultrafast intraband and interband decay channels. The slow component is ~1.5 ps, which is primarily assigned to optical phonon-acoustic phonon scattering. The contribution of fast component exhibits an increase trend in the probe photon frequencies from 2600 to 3100 cm. At the probe frequency of 2700 cm, the accelerated carrier relaxation was detected, which resulted from the interband triple-resonance electron-phonon scattering in graphene. At the probe frequency of 3175 cm, a clear instant negative differential transmission signal was observed, which is due to stimulated two-phonon emission involved with G phonons in graphene. This result indicates that graphene can be used as a source of coherent ultrashort sound-wave emission. © 2012 Optical Society of America OCIS codes: (320.7130) Ultrafast processes in condensed matter, including semiconductors; (320.7110) Ultrafast nonlinear optics; (160.4236) Nanomaterials. References and links 1. A. K. Geim, “Graphene: status and prospects,” Science 324(5934), 1530–1534 (2009). 2. K. S. Novoselov, “Nobel lecture: graphene: materials in the flatland,” Rev. Mod. Phys. 83(3), 837–849 (2011). 3. A. H. Castro Neto, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009). 4. S. Das Sarma, S. Adam, E. H. Hwang, and E. Rossi, “Electronic transport in two-dimensional graphene,” Rev. Mod. Phys. 83(2), 407–470 (2011). 5. E. H. Hwang, B. Y.-K. Hu, and S. Das Sarma, “Inelastic carrier lifetime in graphene,” Phys. Rev. B 76(11), 115434 (2007). 6. C.-H. Park, F. Giustino, M. L. Cohen, and S. G. Louie, “Velocity renormalization and carrier lifetime in graphene from the electron-phonon interaction,” Phys. Rev. Lett. 99(8), 086804 (2007). 7. J. González and E. Perfetto, “Unconventional quasiparticle lifetime in graphene,” Phys. Rev. Lett. 101(17), 176802 (2008). 8. R. Kim, V. Perebeinos, and P. Avouris, “Relaxation of optically excited carriers in graphene,” Phys. Rev. B 84(7), 075449 (2011). 9. J. Shang, Z. Luo, C. Cong, J. Lin, T. Yu, and G. G. Gurzadyan, “Femtosecond UV-pump/visible-probe measurements of carrier dynamics in stacked graphene films,” Appl. Phys. Lett. 97(16), 163103 (2010). 10. J. Shang, T. Yu, and G. G. Gurzadyan, “Femtosecond energy relaxation in suspended graphene: phonon-assisted spreading of quasiparticle distribution,” Appl. Phys. B 107(1), 131–136 (2012). 11. Q. Bao, H. Zhang, Z. Ni, Y. Wang, L. Polavarapu, Z. Shen, Q.-H. Xu, D. Tang, and K. P. Loh, “Monolayer graphene as a saturable absorber in a mode-locked laser,” Nano Res. 4(3), 297–307 (2011). 12. F. Carbone, G. Aubock, A. Cannizzo, F. Van Mourik, R. R. Nair, A. K. Geim, K. S. Novoselov, and M. Chergui, “Femtosecond carrier dynamics in bulk graphite and graphene paper,” Chem. Phys. Lett. 504(1-3), 37–40 (2011). 13. J. Shang, T. Yu, J. Lin, and G. G. Gurzadyan, “Ultrafast electron-optical phonon scattering and quasiparticle lifetime in CVD-grown graphene,” ACS Nano 5(4), 3278–3283 (2011). #176199 $15.00 USD Received 13 Sep 2012; revised 18 Oct 2012; accepted 21 Oct 2012; published 5 Nov 2012 (C) 2012 OSA 1 December 2012 / Vol. 2, No. 12 / OPTICAL MATERIALS EXPRESS 1713 14. M. Breusing, S. Kuehn, T. Winzer, E. Malic, F. Milde, N. Severin, J. P. Rabe, C. Ropers, A. Knorr, and T. Elsaesser, “Ultrafast nonequilibrium carrier dynamics in a single graphene layer,” Phys. Rev. B 83(15), 153410 (2011). 15. J. M. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M. G. Spencer, “Measurement of ultrafast carrier dynamics in epitaxial graphene,” Appl. Phys. Lett. 92(4), 042116 (2008). 16. L. Huang, G. V. Hartland, L.-Q. Chu, R. M. Luxmi, R. M. Feenstra, C. Lian, K. Tahy, and H. Xing, “Ultrafast transient absorption microscopy studies of carrier dynamics in epitaxial graphene,” Nano Lett. 10(4), 1308–1313 (2010). 17. H. Wang, J. H. Strait, P. A. George, S. Shivaraman, V. B. Shields, M. Chandrashekhar, J. Hwang, F. Rana, M. G. Spencer, C. S. Ruiz-Vargas, and J. Park, “Ultrafast relaxation dynamics of hot optical phonons in graphene,” Appl. Phys. Lett. 96(8), 081917 (2010). 18. B. Gao, G. Hartland, T. Fang, M. Kelly, D. Jena, H. G. Xing, and L. Huang, “Studies of intrinsic hot phonon dynamics in suspended graphene by transient absorption microscopy,” Nano Lett. 11(8), 3184–3189 (2011). 19. P. J. Hale, S. M. Hornett, J. Moger, D. W. Horsell, and E. Hendry, “Hot phonon decay in supported and suspended exfoliated graphene,” Phys. Rev. B 83(12), 121404 (2011). 20. P. A. Obraztsov, M. G. Rybin, A. V. Tyurnina, S. V. Garnov, E. D. Obraztsova, A. N. Obraztsov, and Y. P. Svirko, “Broadband light-induced absorbance change in multilayer graphene,” Nano Lett. 11(4), 1540–1545 (2011). 21. D. Sun, Z.-K. Wu, C. Divin, X. Li, C. Berger, W. A. de Heer, P. N. First, and T. B. Norris, “Ultrafast relaxation of excited Dirac fermions in epitaxial graphene using optical differential transmission spectroscopy,” Phys. Rev. Lett. 101(15), 157402 (2008). 22. K.-J. Yee, J.-H. Kim, M. H. Jung, B. H. Hong, and K.-J. Kong, “Ultrafast modulation of optical transitions in monolayer and multilayer graphene,” Carbon 49(14), 4781–4785 (2011). 23. D. Sun, C. Divin, C. Berger, W. A. de Heer, P. N. First, and T. B. Norris, “Hot carrier cooling by acoustic phonons in epitaxial graphene by ultrafast pump-probe spectroscopy,” Phys. Status Solidi C 8(4), 1194–1197 (2011). 24. T. Limmer, A. J. Houtepen, A. Niggebaum, R. Tautz, and E. Da Como, “Influence of carrier density on the electronic cooling channels of bilayer graphene,” Appl. Phys. Lett. 99(10), 103104 (2011). 25. S. Winnerl, M. Orlita, P. Plochocka, P. Kossacki, M. Potemski, T. Winzer, E. Malic, A. Knorr, M. Sprinkle, C. Berger, W. A. de Heer, H. Schneider, and M. Helm, “Carrier relaxation in epitaxial graphene photoexcited near the Dirac point,” Phys. Rev. Lett. 107(23), 237401 (2011). 26. P. A. George, J. Strait, J. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M. G. Spencer, “Ultrafast optical-pump terahertz-probe spectroscopy of the carrier relaxation and recombination dynamics in epitaxial graphene,” Nano Lett. 8(12), 4248–4251 (2008). 27. H. Choi, F. Borondics, D. A. Siegel, S. Y. Zhou, M. C. Martin, A. Lanzara, and R. A. Kaindl, “Broadband electromagnetic response and ultrafast dynamics of few-layer epitaxial graphene,” Appl. Phys. Lett. 94(17), 172102 (2009). 28. J. H. Strait, H. Wang, S. Shivaraman, V. Shields, M. Spencer, and F. Rana, “Very slow cooling dynamics of photoexcited carriers in graphene observed by optical-pump terahertz-probe spectroscopy,” Nano Lett. 11(11), 4902–4906 (2011). 29. A. Bostwick, T. Ohta, T. Seyller, K. Horn, and E. Rotenberg, “Quasiparticle dynamics in graphene,” Nat. Phys. 3(1), 36–40 (2007). 30. S. Y. Zhou, G.-H. Gweon, A. V. Fedorov, P. N. First, W. A. de Heer, D.-H. Lee, F. Guinea, A. H. Castro Neto, and A. Lanzara, “Substrate-induced bandgap opening in epitaxial graphene,” Nat. Mater. 6(10), 770–775 (2007). 31. Y. Liu, L. Zhang, M. K. Brinkley, G. Bian, T. Miller, and T.-C. Chiang, “Phonon-induced gaps in graphene and graphite observed by angle-resolved photoemission,” Phys. Rev. Lett. 105(13), 136804 (2010). 32. D. A. Siegel, C.-H. Park, C. Hwang, J. Deslippe, A. V. Fedorov, S. G. Louie, and A. Lanzara, “Many-body interactions in quasi-freestanding graphene,” Proc. Natl. Acad. Sci. U.S.A. 108(28), 11365–11369 (2011). 33. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008). 34. L. M. Malard, M. A. Pimenta, G. Dresselhaus, and M. S. Dresselhaus, “Raman spectroscopy in graphene,” Phys. Rep. 473(5-6), 51–87 (2009). 35. R. Saito, M. Hofmann, G. Dresselhaus, A. Jorio, and M. S. Dresselhaus, “Raman spectroscopy of graphene and carbon nanotubes,” Adv. Phys. 60(3), 413–550 (2011). 36. A. Gupta, G. Chen, P. Joshi, S. Tadigadapa, and P. C. Eklund, “Raman scattering from high-frequency phonons in supported n-graphene layer films,” Nano Lett. 6(12), 2667–2673 (2006). 37. Z. Ni, Y. Wang, T. Yu, and Z. Shen, “Raman spectroscopy and imaging of graphene,” Nano Res. 1(4), 273–291 (2008). 38. F. Rana, “Electron-hole generation and recombination rates for coulomb scattering in graphene,” Phys. Rev. B 76(15), 155431 (2007). 39. F. Rana, P. A. George, J. H. Strait, J. Dawlaty, S. Shivaraman, M. Chandrashekhar, and M. Spencer, “Carrier recombination and generation rates for intravalley and intervalley phonon scattering in graphene,” Phys. Rev. B 79(11), 115447 (2009). 40. K. M. Borysenko, J. T. Mullen, E. A. Barry, S. Paul, Y. G. Semenov, J. M. Zavada, M. B. Nardelli, and K. W. Kim, “First-principles analysis of electron-phonon interactions in graphene,” Phys. Rev. B 81(12), 121412 (2010). 41. T. Winzer, A. Knorr, and E. Malic, “Carrier multiplication in graphene,” Nano Lett. 10(12), 4839–4843 (2010). #176199 $15.00 USD Received 13 Sep 2012; revised 18 Oct 2012; accepted 21 Oct 2012; published 5 Nov 2012 (C) 2012 OSA 1 December 2012 / Vol. 2, No. 12 / OPTICAL MATERIALS EXPRESS 1714 42. F. Rana, J. H. Strait, H. Wang, and C. Manolatou, “Ultrafast carrier recombination and generation rates for plasmon emission and absorption in graphene,” Phys. Rev. B 84(4), 045437 (2011). 43. E. Malic, T. Winzer, E. Bobkin, and A. Knorr, “Microscopic theory of absorption and ultrafast many-particle kinetics in graphene,” Phys. Rev. B 84(20), 205406 (2011). 44. A. L. Walter, A. Bostwick, K.-J. Jeon, F. Speck, M. Ostler, T. Seyller, L. Moreschini, Y. J. Chang, M. Polini, R. Asgari, A. H. MacDonald, K. Horn, and E. Rotenberg, “Effective screening and the plasmaron bands in graphene,” Phys. Rev. B 84(8), 085410 (2011). 45. K. Kang, D. Abdula, D. G. Cahill, and M. Shim, “Lifetimes of optical phonons in graphene and graphite by timeresolved incoherent anti-Stokes Raman scattering,” Phys. Rev. B 81(16), 165405 (2010). 46. W.-K. Tse and S. Das Sarma, “Energy relaxation of hot Dirac fermions in graphene,” Phys. Rev. B 79(23), 235406 (2009). 47. Z. Luo, T. Yu, J. Shang, Y. Wang, S. Lim, L. Liu, G. G. Gurzadyan, Z. Shen, and J. Lin, “Large-scale synthesis of bi-Layer graphene in strongly coupled stacking order,” Adv. Funct. Mater. 21(5), 911–917 (2011). 48. C. Thomsen and S. Reich, “Double resonant raman scattering in graphite,” Phys. Rev. Lett. 85(24), 5214–5217 (2000). 49. I. Kupčic, “Triple-resonant two-phonon Raman scattering in graphene,” J. Raman Spectrosc. 43(1), 1–5 (2012). 50. J. Kürti, V. Zolyomi, A. Gruneis, and H. Kuzmany, “Double resonant Raman phenomena enhanced by Van Hove singularities in single-wall carbon nanotubes,” Phys. Rev. B 65(16), 165433 (2002). 51. S. Wu, L. Jing, Q. Li, Q. W. Shi, J. Chen, H. Su, X. Wang, and J. Yang, “Average density of states in disordered graphene systems,” Phys. Rev. B 77(19), 195411 (2008). 52. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005). 53. J. Martin, N. Akerman, G. Ulbricht, T. Lohmann, J. H. Smet, K. von Klitzing, and A. Yacoby, “Observation of electron–hole puddles in graphene using a scanning single-electron transistor,” Nat. Phys. 4(2), 144–148 (2008). 54. Y. Zhang, V. W. Brar, C. Girit, A. Zettl, and M. F. Crommie, “Origin of spatial charge inhomogeneity in graphene,” Nat. Phys. 5(10), 722–726 (2009). 55. K. Ziegler, B. Dóra, and P. Thalmeier, “Density of states in disordered graphene,” Phys. Rev. B 79(23), 235431 (2009). 56. R. Xiao, F. Tasnadi, K. Koepernik, J. W. F. Venderbos, M. Richter, and M. Taut, “Density functional investigation of rhombohedral stacks of graphene: topological surface states, nonlinear dielectric response, and bulk limit,” Phys. Rev. B 84(16), 165404 (2011). 57. B. A. Ruzicka, S. Wang, J. Liu, K.-P. Loh, J. Z. Wu, and H. Zhao, “Spatially resolved pump-probe study of single-layer graphene produced by chemical vapor deposition,” Opt. Mater. Express 2(6), 708–716 (2012). 58. W. E. Bron and W. Grill, “Stimulated phonon emission,” Phys. Rev. Lett. 40(22), 1459–1463 (1978). 59. P. Hu, “Stimulated emission of 29-cm phonons in ruby,” Phys. Rev. Lett. 44(6), 417–420 (1980). 60. L. G. Tilstra, A. F. M. Arts, and H. W. de Wijn, “Coherence of phonon avalanches in ruby,” Phys. Rev. B 68(14),

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of electron-phonon interaction on spectroscopies in graphene

We calculate the effect of the electron-phonon interaction on the electronic density of states DOS , the quasiparticle properties, and on the optical conductivity of graphene. In metals with DOS constant on the scale of phonon energies, the electron-phonon renormalizations drop out of the dressed DOS, however, due to the Dirac nature of the electron dynamics in graphene, the band DOS is linear ...

متن کامل

Band structure and many body effects in graphene

We have determined the electronic bandstructure of clean and potassium-doped single layer graphene, and fitted the graphene π bands to a oneand three-near-neighbor tight binding model. We characterized the quasiparticle dynamics using angle resolved photoemission spectroscopy. The dynamics reflect the interaction between holes and collective excitations, namely plasmons, phonons, and electron-h...

متن کامل

Charge-carrier screening in single-layer graphene.

The effect of charge-carrier screening on the transport properties of a neutral graphene sheet is studied by directly probing its electronic structure. We find that the Fermi velocity, Dirac point velocity, and overall distortion of the Dirac cone are renormalized due to the screening of the electron-electron interaction in an unusual way. We also observe an increase of the electron mean free p...

متن کامل

Electric field effect tuning of electron-phonon coupling in graphene.

Gate-modulated low-temperature Raman spectra reveal that the electric field effect (EFE), pervasive in contemporary electronics, has marked impacts on long-wavelength optical phonons of graphene. The EFE in this two-dimensional honeycomb lattice of carbon atoms creates large density modulations of carriers with linear dispersion (known as Dirac fermions). Our EFE Raman spectra display the inter...

متن کامل

Probing strain-induced electronic structure change in graphene by Raman spectroscopy.

Two-phonon Raman scattering in graphitic materials provides a distinctive approach to probing the material's electronic structure through the spectroscopy of phonons. Here we report studies of Raman scattering of the two-dimensional mode of single-layer graphene under uniaxial stress and which implicates two types of modification of the low-energy electronic structure of graphene: a deformation...

متن کامل

Phonons in graphene with point defects.

The phonon density of states (DOS) of graphene with different types of point defects (carbon isotopes, substitution atoms, vacancies) is considered. Using a solvable model which is based on the harmonic approximation and the assumption that the elastic forces act only between nearest neighboring ions we calculate corrections to the graphene DOS dependent on the type and concentration of defects...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012